Gene Associated with Type 2 Diabetes Is Low in People with Alzheimer’s Disease

A study in the journal Aging Cell shows that people with Alzheimer’s disease have a low level of the gene PGC-1, which regulates glucose.

New York, NY
 – October 12, 2010 /Press Release/  –– 

Mount Sinai School of Medicine researchers have found that a gene associated with the onset of Type 2 diabetes also is found at lower-than-normal levels in people with Alzheimer’s disease. The research, led by Giulio Maria Pasinetti, MD, PhD, The Saunder Family Professor in Neurology, and Professor of Psychiatry and Geriatrics and Adult Development at Mount Sinai School of Medicine, was published this month in Aging Cell.

The new study provides insight into a potential mechanism that might explain the relationship between Type 2 diabetes and the onset and progression of Alzheimer's disease. Recent evidence indicates that healthy elderly subjects affected by Type 2 diabetes are twice as likely to develop Alzheimer’s disease, but researchers have been unable to explain how.

"The relationship between Type 2 diabetes and Alzheimer’s disease has been elusive,” said Dr. Pasinetti. “This new evidence is of extreme interest, especially since approximately 60 percent of Alzheimer’s disease cases have at least one serious medical condition primarily associated with Type 2 diabetes.”

Using mice that were genetically engineered to have Alzheimer’s disease comparable to that seen in humans, Dr. Pasinetti and colleagues found that a gene known as proliferator-activated receptor coactivator 1 (PGC-1), a key regulator of glucose currently investigated as a potential therapeutic target for Type 2 diabetes, is decreased in Alzheimer’s disease. The team reports that this decrease might be causally linked to promotion of Alzheimer’s disease. They found that PGC-1 promotes degradation of a specific enzyme known as beta-secretase (BACE). ACE is directly involved in the processing and eventually generation of β-amyloid, an abnormal protein highly linked to Alzheimer’s disease and brain degeneration.

"Our research is the first to find that PGC-1 is a common denominator between Type 2 diabetes and Alzheimer’s disease," said Dr. Pasinetti. "This discovery will have significant implications for the more than five million Americans affected by Alzheimer's disease, a number that is expected to skyrocket in the next three decades as the population ages. We look forward to continuing to research this discovery and translate it into the development of novel approaches for disease prevention and treatment."

Dr. Pasinetti and his colleagues are optimistic that if they find that PGC-1 can be manipulated pharmacologically to prevent BACE accumulation in the brain, these studies will provide important insights for the formulation of novel treatments and possible preventative strategies in Alzheimer’s disease.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation’s oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation’s top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org. Follow us on Twitter @mountsinainyc.