Summer School Content and Schedule

June 13, 2016

Day 1: Morning – Introduction to Unix – Anthony Costa, Ph.D.
Objective: Introduce the class to each other and to the instructors and learn basic Unix skills
Format: Group introduction, lecture using a blend of ISMMS and Software Carpentry materials and practical session with polleverywhere and assistance from the Scientific Computing team
- Welcome and Introduction to all instructors and student mentors
- Students will answer two questions: (1) why are you here and (2) what do you hope to learn?
- Introduce basic Unix concepts including the multi-user environment, permissions, file sharing, environment variables, paths, libraries, shells, pipes, interactive command and script execution, running jobs in the background/foreground, the structure of the file system and directory navigation.
- Demonstrations and hands-on instruction for editing files, running scripts and executables, and moving around the file system. Short exercises to become familiar with this environment and the class will move forward together after each exercise has been completed by all participants.

June 13, 2016

Day 1: Afternoon – Introduction to Computing and Data – Anthony Costa, Ph.D.
Objective: Learn about tradeoffs in computing architectures and develop skills to submit jobs and troubleshoot
Format: Lecture and practical session using a blend of ISMMS, Software Carpentry and C. Titus Brown’s materials and practical session with polleverywhere and assistance from the Scientific Computing team
- Introduce computer architecture and concepts including the Von Neumann architecture, shared memory, MIMD/SIMD, massively parallel processing, Amazon Web Services, accelerators and numerical libraries.
- Contrast Minerva/cluster computing and Amazon Web Services hardware architecture and software environments explaining the benefits and limitations of both.
- Motivate hardware architecture and software choices based on examples from computational biology and bioinformatics including the GATK pipeline. Give case studies on architecture tradeoffs and identifying computational and data goals.
- Introduce and demonstrate queuing systems, strategies for submitting jobs and differences between interactive vs. batch mode. Demonstrate job submission for AWS.
- Show examples of troubleshooting and problem solving.

June 13, 2016

Day 1: Evening – Poster Session Social – Elizabeth Webster
Objective: Improve communication and social skills and develop contacts
Format: Poster session with invited graduate students from other NYC-based schools
- We will contact our network of NYC-based faculty to identify graduate students to present a poster and meet the summer school students
- Summer school students will be invited but not required to bring posters

June 14, 2016

Day 2: Morning – Introduction to Scripting and Programming – Anthony Costa, Ph.D.
Objective: Learn basic concepts of scripting; write and troubleshoot basic scripts
Format: Lecture and practical session with polleverywhere and assistance from the Scientific Computing team
- Introduce and demonstrate scripting vs. compiled languages, scripting control flow and basic constructs, awk, sed, sort, uniq, and advanced UNIX pipes.
- Introduce scripting for data handling and processing, the screen command, interactive jobs and advanced job submission with complex scripts.
- Students will compose, test and troubleshoot basic scripts in real-time.

June 14, 2016

Day 2: Afternoon – Introduction to Python – Anthony Costa, Ph.D.
Objective: Learn basic concepts of Python; write and troubleshoot basic Python programs
Format: Lecture using iPython notebook (no slides) and practical session with polleverywhere and assistance from the Scientific Computing team and tour
- Introduce Python, Python vs. other languages (e.g., Perl), variables, operators, data structures, decisions and loops, file I/O, modules and packages (scipy, numpy) and other functions using iPython notebook.
Students will compose, test and troubleshoot basic Python scripts in real-time.
Tour the supercomputer data center to gain a better understanding of computing and data infrastructure

June 14, 2016
Day 2: Evening – PathoMap Activity – Christopher Mason, Ph.D., Weill-Cornell
Objective: Learn more about microbiomes and sequencing in a lab environment
Format: Interactive laboratory and seminar
- Field trip to Weill-Cornell to learn about the NYC subway PathoMap project
- Participate in a self-analysis of pathogen analysis by asking the students to swab to contribute their DNA and help us plot the microbiome and metagenome map for the summer school students
- Learn the basics of DNA extraction, library prep, good lab techniques, protocol and experiment design

June 15, 2016
Day 3: Morning – Individualized Computational and Data Skills Development Lab – Anthony Costa, Ph.D.
Objective: Learn specific, self-selected computational skills in more depth
Format: Small groups study in self-selected areas with faculty oversight
- Students will choose between several focus groups for in-depth discussion, demonstration and/or hands-on development of skills between computing experts and their peers. Members of the Scientific Computing team will lead discussion and demonstration in the following areas: (1) Using Unix, (2) data movement/management, (3) scripting, (4) Python, (5) computing @AWS and other timely topics of interest. We will request specific areas from students and can run focus groups ad hoc in response to what students said they wanted on day 1.

June 15, 2016
Day 3: Afternoon – Overview of the Human Genome and Genetic Variation – Andrew Sharp, Ph.D.
Objective: Learn fundamental information about the human genome
Format: Lecture
- Outline of the history of the genome and the progression of genomics
- Architecture and features of the human – genes, repeats, conserved regions, segmental duplications
- The spectrum of genetic variation and methods used to detect them
- Analytical approaches for detecting functional variants – Association analysis, linkage, exome and whole genome sequencing

June 16, 2016
Day 4: Morning – Genome Technologies – Milind Mahajan, Ph.D.
Objective: Learn about various genomic technologies and analytical methods for large-scale data analysis
Format: Lecture and demonstration
- Microarray-based methods for genotyping SNPs and CNVs and quantifying RNA and DNA methylation
- Different sequencing platforms and methods (Sanger, Illumina, Ion Torrent, PacBio) and their relative strengths and weaknesses
- Genome, exome, RNA and methylation sequencing – methodological and analytical overview of each

June 16, 2016
Day 4: Afternoon – Approaches and statistical considerations for analyzing genomic data – Andrew Sharp, Ph.D.
Objective: Learn about methods and importance of quality control of genomic data, statistical considerations and power calculations for large-scale data analysis
Format: Lecture
- Principle component and cluster analysis and its uses for insights into trends, biases, and data quality control
- Types of data plots and their uses for gaining insights into high dimensional data
- Statistical approaches and power calculations for analyzing large datasets

June 16, 2016
Day 4: Evening – Field Trip to New York Genome Center – Robert Darnell, Ph.D., NYGC
Objective: Learn about computational genomic facilities
Format: Lecture and tour
- Field trip to NYGC for a tour and seminar by Robert Darnell, Ph.D.

June 17, 2016
Day 5: Morning – The UCSC Genome Browser and Galaxy Toolkit – Andrew Sharp, Ph.D.
Objective: Learn how to browse, download and analyze genome sequence data
Format: Lecture, demonstration and practical session
- A real-time tutorial covering features and functionality of the UCSC Genome Browser – tutorial integrated with hands on practical exercises
- Basic features and browsing in the UCSC Genome Browser
- Advanced uses of the UCSC Genome Browser, including data downloads from the Table Browser, Custom Track creation, and using integrated tools for performing intersections
- An introduction to the Galaxy Toolkit

June 17, 2016
Day 5: Afternoon – Practical problem solving using The UCSC Genome Browser and Galaxy Toolkit – Andrew Sharp, Ph.D.
Objective: Develop skills to analyze real-life genomic data with the UCSC Genome Browser and learn new approaches through a case study from an invited speaker
Format: Small group problem solving and presentations
- Students will be given a number of real-life genomic datasets and work in pairs/small groups, using the UCSC Genome Browser and Galaxy Toolkit to analyze these data and produce biological conclusions.
- Students will briefly present to the group the approach they used to solve each problem
- Invited Speaker: Eric Schadt, Ph.D., ISMMS Case study

June 20, 2016
Day 6: Morning – Introduction to Next Generation Sequencing – Michael Linderman, Ph.D.
Objective: Develop skills to analyze the results from the genomic pipeline
Format: Lecture and demonstration
- Introduction to 2nd Generation Sequencing
 - Introduce the entire 2nd generation sequencing workflow, including the use of hybrid capture technology. Discuss the importance of CLIA and other certifications. Present limitations imposed by the sequencing technology itself.
- Short-read Mapping and Calibration: FASTQs to BAMs
 - Introduce front-end of data pipeline for 2nd generation DNA sequencing technology including alignment and recalibration. Present commonly used read mapping algorithms and tools, and the strengths and limitations thereof.
- Variant Calling: BAMs to VCF
 - Introduce back-end of data pipeline including variant calling for SNVs and indels and variant filtering. Call variants in genomic data. Focus on various sources of error in filtering, mapping and variant detection.
- Introduction to Annotation
 - Review variant calling results with a focus on important quality metrics. Introduce tools and data resources used in annotating and interpreting a personal genome.

June 20, 2016
Day 6: Afternoon – Genomic pipeline tools – Michael Linderman, Ph.D.
Objective: Develop computational and data skills to analyze the results from the genomic pipeline
Format: Practical session and discussion
- Explore the results produced by the genome analysis pipeline in a hands-on session that includes:
 1. Explore alignment results with particular attention to different error modes
 2. Review QC metrics such a mean coverage, GC bias and quality-by-cycle
 3. Review variants calls using the pileup and variant QC metrics.
 4. Annotate variants of interest with data from 1000 Genomes Project and other sources with online tools such as Variant Effect Predictor.
June 20, 2016
Day 6: Evening – Big Data and Genomics Trivia Competition – Elizabeth Webster
Objective: Develop team skills and learn about big data and genomics for both the students in the competition and for the graduate students developing the questions and running the trivia night
Format: Small group problem solving in a gently competitive environment
- We will assign student into groups of five to solve questions related to genomics and computation.
==
June 21, 2016
Day 7: Morning – Genomics in the Clinic – Michael Linderman, Ph.D.
Objective: Develop computational and data skills to find and analyze real-life data from public resources and understand the patient point of view with respect to genomic testing
Format: Lecture and discussion
- Introduction to Pharmacogenomics using Warfarin and Clopidogrel as motivating examples.
- Common Multi-factorial Disease Risk: introduce techniques to estimating genetic risk for common multi-factorial disease using GWAS results from public databases, the literature and other resources.
- Build hypotheses of the nature of Mendelian disease that causes variant and translate those hypotheses into queries against the called variants. Introduce how variants could be prioritized for likely pathogenic effect.
- Introduce how genetic testing results are communicated to patients, with particular focus on whole genome sequencing. Review current understanding of how patients make informed decisions about genetic testing and how they respond to genetic testing results emotionally and behaviorally.

June 21, 2016
Day 7: Afternoon – Genomics in the Clinic, cont’d – Michael Linderman, Ph.D.
- Objective: Develop computational and data skills to interpret real-life data sets for real-life situations
- Format: Practical session and discussion
- Analyze and interpret variants in different settings, including:
 1. Determine recommended dosing for Warfarin based on relevant genotype data
 2. Compute predicted risk for Type 2 Diabetes using GWAS data
 3. Classify variant pathogenicity
 4. Identify variants of interest in clinical case scenarios using example WES data
- As a group discuss “questions to consider” during decision-making and issues related to the interpretation of the significance of genomic variants and how to communicate these findings.

June 22, 2016
Day 8: Morning – Analysis of rare variant/exome datasets – Menacham Fromer, Ph.D.
Objective: Learn how to analyze rare variant/exome datasets with computational and data tools
Format: Lecture and practical session
- How to call rare single-nucleotide and insertion/deletion variants, copy number variants (CNV), and de novo mutation calling using GATK, PlinkSeq, and XHMM. We will review current case studies in recent publications that have used these tools.
- Hands-on exercises with GATK, PlinkSeq and XHMM using small-scale examples.

June 22, 2016
Day 8: Afternoon – Analysis of de novo mutations – Menacham Fromer, Ph.D.
Objective: Learn how to use DAPPLE and DNENRICH for de novo mutations
Format: Lecture and practical session using polleverywhere and ISMMS graduate student assistants
- Introduction to more advanced tools for data-driven approaches for genetic association and pathway enrichment for de novo mutations, such as DAPPLE and DNENRICH.
- Hands-on exercises with real examples with DAPPLE and DNENRICH for real-life rare-variant datasets.
• Tour: ISMMS's genomic clinical laboratory and sequencing center.

June 23, 2016
Day 9: Morning – Isoform-level analysis of RNA-seq datasets – Bojan Losic, Ph.D.
Objective: Learn about RNA-seq data and how and when to use RNA-seq computational and data tools
Format: Lecture and practical session using a blend of ISMMS and C. Titus Brown NGS course materials
• Unique features of RNA-seq data including important statistical differences from microarray expression data. Introduce standard tools for the analysis and linear experimental modeling of RNA-seq data including R-based packages such as voom, spliced-gap aligner STAR, IGV for visualization. MISO, PEER, and custom analysis tools for studying exotic RNA-species and structural variance will be shown.
• Expanding beyond ordinary expression profiling to better survey the transcriptomic landscape as facilitated by small-scale real world examples from suitable in-house real datasets and appropriate publications. How to prepare and carry out transcript-level co-expression analysis on larger RNA-seq datasets.

June 23, 2016
Day 9: Afternoon – Individualized Computational and Data Skills Development Lab – Bojan Losic, Ph.D.
Objective: Improve use of computational genomics tools and learn new approaches from a case study
Format: Self-selected small group faculty-led discussion and/or practical skills development and lecture from an invited speaker
• Students will choose between several focus groups for in-depth discussion, demonstration and/or hands-on development of skills between computing experts and their peers. Faculty and graduate students from GGS will lead discussion and demonstration in: (1) PlinkSeq, (2) RNA-seq, (3) R-based analysis packages, (4) GATK, (5) DAPPLE and DNENRICH and other student-requested topics. We will request specific areas from students and will run faculty-directed focus groups in response to student requests.
• Invited Speaker: Ross Cagan, Ph.D. will present a case study based on discoveries in his Center for Personalized Cancer Therapeutics.

June 23, 2016
Day 9: Evening – PathoMap Activity cont’d – Christopher Mason, Ph.D., Weill-Cornell
Objective: Learn more about microbiomes and sequencing in a lab environment
Format: Interactive laboratory and practical session
• Field trip to continue to the PathoMap activity with a tutorial in how to analyze the data in R with MetaPhlAn collected from the swabbing activity on Day 2

June 24, 2016
Day 10: Morning – Responsible Conduct of Research – Charles V. Mobbs, Ph.D.
Objective: (1) identify and understand of bioethics issues, (2) analyze bioethics issues, (3) improve group problem solving
Format: Lecture, small peer group problem solving and discussion with faculty guidance
• Using materials on the NIH Office of Research Integrity website, we will discuss: (i) integrity of data; use and misuse of data, (ii) ownership and access to data; (iii) storage and retention of data; and (iv) secondary use of data.
• Each participant will be required to analyze a real-life case study of the bioethics of specific genomic technologies (such as CRISPR/Cas9 therapeutically or advanced IVF) and provide an analysis of the resolution of the dilemma.
• Small groups will discuss specific pre-assigned case studies with other team members and a faculty mentor. These discussions will be followed by an hour full class wrap-up in which the groups compare notes on their conclusions, insights and remaining questions.
• Full class wrap-up in which the groups compare notes on their conclusions, insights and remaining questions.
• Each participant is required to submit a report discussing the assigned real-life case study of an ethical research dilemma related to data encountered by the participant, and an analysis of the resolution of the dilemma.
June 24, 2016
Day 10: Afternoon – Presentation Forum – Luz Claudio, Elizabeth Webster and other faculty

Objective: (1) practice and improve presentation skills in small and large group settings, (2) improve peer communication skills, (3) prepare students for briefing their research groups when they return to their home institutions, (4) answer any remaining questions about the last two weeks of training

Format: Small peer group self-mentoring with faculty oversight then student presentations to the entire group

- Students will be asked to develop a five minute presentation with one slide on (1) what they learned and (2) how they will apply this when they return to their home institution
- Students will be assigned to groups of five to present and receive feedback from other students in the group
- Faculty will be available to answer questions on any of the topics from the past two weeks
- Each student will present the one slide to the entire group
- Students asked to fill be given a survey to get feedback on their experiences

===
