In this issue:

Future Leaders for Women in Research: Interview with Dr. Emily Bernstein, PhD

By Delaine Ceholski

This month we are continuing the “Future Leaders for Women in Research” series with an interview with Dr. Emily Bernstein, PhD of the Department of Oncological Sciences at Mount Sinai. Dr. Bernstein is an associate professor and has been a PI at Mount Sinai for 7 years and in that time has been incredibly successful, with over 25 publications as a PI in journals such as Nature, Molecular Cell and Nature Communications. In this interview, we find out what it’s like and what it takes to obtain an academic position in the current academic job environment.

1. Where did you complete your PhD?

I was a Genetics graduate student at Stony Brook University and spent my research years at Cold Spring Harbor Laboratory with Gregory Hannon. This was a very exciting period of my scientific life - we were studying the mechanisms of RNA interference (RNAi), a completely novel gene silencing pathway at that time. There was a lot of action in the lab as we worked to identify and purify the enzymes involved, clone them, and study how they worked in the tube and in vivo. I had exposure to loads of biochemistry (and lots of time in the cold room!), as well as animal models such as Drosophila, C. elegans and mice. I was fortunate to spend time abroad in a collaborator's lab, which was a great learning experience. Finally, I learned how to make contributions to a fast moving field, something that has stuck with me throughout the years.

2. Where and with who did you complete your postdoc and for how long?

My postdoc was with Dave Allis at The Rockefeller University and lasted 5 years. I was excited to learn chromatin biology from the master himself and Dave was very supportive of the projects I chose to be involved in. I was fascinated with heterochromatin and studied gene silencing yet again, but now in the context of chromatin (although I still pursued its links to RNA biology). I used female X-inactivation as a system to study the Polycomb family of transcriptional repressors and the histone variant macroH2A, both of which are found on this highly condensed chromosome. While it was a big change coming from the small lab environment of my PhD studies, I learned to be independent, mentor students and write papers and grants.

3. Why did you want to become a PI in an academic institution? Why did you choose it over a non-academic career?

I think that part of me truly loves academia and the freedom to explore new ideas and projects. I also knew that I loved coming to lab every day of my training, and I was happy in that place. I am sure there may be other things I am good at (maybe?), but I love the thrill of pursuit and discovery. Mentoring young scientists is also important to me because I had amazing mentors and that cycle must continue.

4. What was the most difficult obstacle that you faced during your search for a position?

I was fortunate that Dave was a true cheerleader for me and would pick up the phone and call places I was interested in. However, I wanted to keep my search small, as the interview process can be quite exhausting both physically and mentally. The hardest part of the search was finding a place that was interested in my science and also offered an excellent network of colleagues that I could see myself collaborating with or discussing science with. On top of that, I didn't want to compromise quality of life and being in a city was important to me. So, it was about finding an institution where all the puzzle pieces fit together. On top of that you might not know all of the offers on the table, so the timing of how it all unfolds can be very tricky.

5. In your opinion, what is the largest contributing factor to becoming a PI?

It would be hard to boil it down to one factor but I think having a supportive postdoc mentor is most critical; someone who wants to see you do well and will let you take your ideas and reagents with you. Of course, publications are important, although I do think it is overemphasized a bit by search committees. Networking definitely plays a big role and when colleagues, mentors and people in your field respect you, it goes a long way.

6. What advice can you give to those postdocs who want to pursue an academic career? Is there anything that you would have done differently given your experience?

Becoming a PI is not an easy path and one needs to prepare for it for the best they can. Get involved during your postdoc in activities outside of your bench research – write grants, learn to write papers, network and present at meetings, put yourself out there. Ask for advice from peers on how to prepare for the job search. Find an institution where you fit in scientifically and, most importantly, find an institution and department that support you. The idea of having a lab while working in isolation and not having anyone checking in on you as a young investigator is not a good idea. I found career support to be critical at an early stage and I found that here at Mount Sinai, which I believe truly helped me to become successful. So, in sum, make sure to surround yourself with supportive mentors and colleagues throughout your career.

Remember to fill out this year's Postdoc Survey!

The 2015 Postdoc Survey has just been released by the Postdoc Executive Committee. The information collected in this survey, which only takes 15 minutes of your time, is used to assess what is and isn't working for postdocs at Sinai. It has been used to advocate for better career development and improved mentorship for postdocs. In order to make further improvements, we need your help! The more postdocs that complete the survey, the better! If you want to see changes in your postdoc experience at Mount Sinai then have your voice heard and respond to the survey!

You can use the QR code here (use the QR Code Reader App, available for free for iPhone, Android and Windows phones) or go to https://www.surveymonkey.com/r/LMGRS82 to complete the survey.
Sexism in STEM and the Power of Social Media: The Case of Dr. Tim Hunt

By Delaine Ceholski

Historically, women have been underrepresented in the STEM fields (Science, Technology, Engineering and Mathematics). Many studies have tried to pinpoint the reason for this, whether it is lack of women’s interest in these fields, discouragement by teachers and family, long-standing stereotypes of women being incapable in these fields, and even inherent biological and genetic differences between the sexes. Added to this is the perplexing fact that the number of women graduating with degrees in STEM is increasing but few move on to Faculty positions in these fields (and those that do make significantly less than their male counterparts). Whether the reasons for this are biological, sociological or economical, it’s still an issue that doesn’t seem to be improving.

Recently, Dr. Tim Hunt, the 2001 Nobel Prize winner in Physiology or Medicine, gave a talk in South Korea and stated that he has had trouble working with girls in the lab as “Three things happen when they are in the lab: You fall in love with them, they fall in love with you, and when you criticize them they cry.” His comments spurred a worldwide backlash including a hilarious Twitter hashtag #distractinglysexy, where female scientists posted pictures of themselves working in the lab and men questioned their masculinity due to the fact that they made no girls cry in the lab that day (sarcastically of course). Soon after he made these comments, Dr. Hunt, an honorary Professor at the University College London, a member of the Royal Society and a knight, was forced to resign from his position at University College London, despite apologizing for causing offence while still standing by what he said.

While Dr. Hunt’s denigrating comments are not the first of their kind, the response they generated, from men and women alike, shows that the scientific community is tired of the gender bias and sexism that is inherent in the STEM fields. However, as unfortunate as the comments were, they did provide for a rather funny Twitter feed and some witty new lab signature (see photo).
Periodical Crossword Puzzle: New York City

By Delaine Ceholski

Across
2. There is a secret subway train platform in this hotel (2 words)
5. This famous landmark was a gift to the USA from France (3 words)
6. New York was originally named this (2 words)
8. Organization that owns the most land in NYC (2 words)
10. This building has its own zip code: 10118 (2 words)
14. This was the first landscaped park in the USA (2 words)
15. The first steel wire suspension bridge ever constructed (2 words)

Down
1. The biannual phenomenon where the sunset directly aligns with the Manhattan grid system
3. This famous scientist's eyes remain in a safe box in NYC (2 words)
4. Currently, the tallest building in the USA (3 words)
7. NYC served as the nation's _____ from 1785-1790
9. Washington Park, Madison Square Park, Union Square Park and Bryant Park used to be these
11. A famous nickname for NYC (2 words)
12. Highest valued sports franchise in the USA
13. NYC is divided into 5 ______

This month, we are sad to say goodbye to 2 of our editors: Jessica Levingston Macleod and Cecilia Sedano. We wish both of them well in their future endeavors!

We also welcome Przemek Gorski, PhD, as an editor to the periodical. Przemek received his PhD in Biochemistry from the University of Alberta (Canada) and is currently a second year postdoc in the Cardiovascular Research Center.