GOALS & OBJECTIVES: Molecular Genetics Laboratory

The overall goal of the Clinical Molecular Genetics Training Program is to provide the trainee with the skills they will need to direct a molecular diagnostic laboratory. This includes gaining expertise in test design and validation; interpretation, troubleshooting, reporting and communication of results to providers; proper quality control and assurance and to direct a fellowship program in the future. In addition, the trainee will perform research in molecular genetic testing.

The specific skills to master are outlined below:

Patient Care and Laboratory Skills:

- 1. Preanalytical Laboratory Skills
 - Accurately select appropriate laboratory testing based on diagnosis and/or clinical features or appropriate screening testing
 - Identify appropriate specimen type for testing performed in the laboratory
 - Knowledgeable in specimen collection, transport, storage, stability, common interferences, acceptability, accessioning, specimen tracking, and appropriate documentation
- 2. Analytical Laboratory Skills

Competent in practicing general lab quality management procedures through all lab rotations

- Perform reagent controls with all assays including tracking critical reagents lots, testing new critical reagents prior to use, appropriate labeling of all reagents
- Perform quality control with all assays, compile QC record, track QC trend
- Perform regular calibration procedures
- Demonstrate knowledge in setting up and implementing necessary quality measures to assure and improve testing quality
- Get involved with preparation for lab inspections
- Receive training on all aspects of nucleic acid isolation to ensure that the samples are not contaminated and adequate DNA/RNA is obtained for analysis
 - Use of aseptic techniques
 - Choice of appropriate method of isolation
 - Determine concentration or integrity when needed
 - Troubleshoot poor or failed isolations
 - Proper storage of samples and extracted nucleic acid
- Master all aspects of polymerase chain reaction amplification (PCR)
 - Principles of PCR
 - Primer design and assay development
 - Techniques for minimizing PCR contamination
 - Proper controls
 - Troubleshooting of results
- Southern blot analysis
 - Understand principles and techniques used in Southern blotting
 - Troubleshooting of results
- Targeted mutation analysis
 - Understand principles of targeted mutation analyses
 - Multiplex allele specific primer extension and bead arrays
 - Restriction fragment length polymorphism analysis
 - FRET analysis

- Allele specific hybridization
- Pyrosequencing
- Gene Scanning analysis
 - Understand principles and techniques used for gene scanning
 - dHPLC
 - MLPA
 - Troubleshooting of results
- Gene sequencing
 - Understand principles and techniques used in gene sequencing
 - Knowledgeable about different databases and assay design
 - Troubleshooting of results
- Quantitative PCR
 - Understand principles and techniques used in quantitative PCR
 - Troubleshooting and interpretation of results
- o Array Analysis
 - Understand principles and techniques used in array analysis
 - Troubleshooting of results
- Identity testing
 - Understand principles and techniques used in identity testing
 - Zygosity
 - Maternal cell contamination studies
 - Troubleshooting of results
- 3. Postanalytical Laboratory Skills
 - o Results interpretation and reporting
 - Competent in result interpretation. Recognize normal/carrier/affected status, determine the clinical significance, correlate with clinical findings and recent literature, make recommendations for additional testing.
 - Competent in drafting accurate clinical reports
 - Communicate results clearly with healthcare professionals (residents and genetic counselors)
- 4. Rotations in Cytogenetics/Cytogenomics and Biochemical Genetics non-specialty laboratories
 - Understand the indications for performing cytogenetic and biochemical testing
 - o Understand the technologies employed and the technical workflow
 - o Understand the quality control measures implemented in the laboratory
 - o Understand the interpretation and reporting of results
 - Understand the limitations of the technologies employed

Medical Genetic Knowledge:

- 1. Understand the principles of biology and genetics- covered by departmental and divisional seminars, journal clubs and case conferences and medical genetics course
- 2. Understand principles of molecular genetics
 - a. Mode of inheritance
 - b. Different classes of mutations
 - c. Describe mutations based on standard nomenclature
 - d. Bayesian risk analysis
 - e. Significance of novel variations

Practice-Based Learning

- 1. Can review literature to obtain information on molecular genetics techniques and their use in clinical medicine
- 2. Participate in presenting cases at division case conference

Interpersonal & Communication Skills

- 1. Can obtain clinical information to assist the lab in appropriate test selection
- 2. Can explain clinical findings and their significance to laboratory staff
- 3. Can communicate laboratory results in a appropriate manner to patients & their families, and referring physicians and genetic counselors

Professionalism

- 1. Demonstrates respect for patient confidentiality
- 2. Considers sensitivity to patients of diverse backgrounds when communicating lab results
- 3. Become sensitive to ethical issues in genetics, particularly those raised by molecular genetic testing

System-Based Practice

- 1. Work effectively with various members of the clinical and laboratory team to facilitate accurate and appropriate patient testing and reporting of results
- 2. Is aware of the cost and risks/benefits of obtaining samples and providing testing
- 3. Participate in lab quality management process including quality control, quality assurance and quality improvement
- 4. Familiarize with other lab management process including laboratory information systems, billing and reimbursement issues and policy implications

Research-Related Activities

- 1. Learn IRB and HIPAA regulations, protocols, and consent process
- 2. Development of new laboratory tests and validation of assays for clinical use
- 3. Participate in ongoing translational research projects related to molecular genetics