Photo of David Hicks

David Hicks

  • ASSOCIATE PROFESSOR Pharmacology and Systems Therapeutics
Print ProfilePrint Profile

Publications

Hicks DB, Liu J, Fujisawa M, Krulwich TA. F(1)F(0)-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations. Biochim Biophys Acta 2010 Aug; 1797(8): 1362-1377.

Krulwich TA, Hicks DB, Ito M. Cation/proton antiporter complements of bacteria: why so large and diverse. Mol Microbiol 2009 Oct; 74(2): 257-260.

Liu J, Fujisawa M, Hicks DB, Krulwich TA. Characterization of the Functionally Critical AXAXAXA and PXXEXXP Motifs of the ATP Synthase c-Subunit from an Alkaliphilic Bacillus. J Biol Chem 2009 Mar; 284(13): 8714-8725.

Liu J, Krulwich TA, Hicks DB. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4. Biochim Biophys Acta 2008 May; 1777(5): 453-461.

Swartz TH, Ito M, Ohira T, Natsui S, Hicks DB, Krulwich TA. Catalytic properties of Staphylococcus aureus and Bacillus members of the secondary cation/proton antiporter-3 (Mrp) family are revealed by an optimized assay in an Escherichia coli host. J Bacteriol. 2007 Apr; 189(8): 3081-3090.

Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA. Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 2007 Jan; 46(1): 306-313.

Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB, Ito M, Ma Y, Krulwich TA. The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda Lake Haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 2005 Nov; 187(22): 7589-7595.

Swartz TH, Ito M, Hicks DB, Nuqui M, Guffanti AA, Krulwich TA. The Mrp Na+/H+ antiporter increases the activity of the malate:quinone oxidoreductase of an Escherichia coli respiratory mutant. J Bacteriol 2005 Jan; 187(1): 388-91.

Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB, Ito M, Ma Y, Krulwich TA. The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda Lake Haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 2005 Nov; 187(22): 7589-95.

Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 2004 Jun 18; 279(25): 26546-54.

Industry Relationships

Physicians and scientists on the faculty of the Icahn School of Medicine at Mount Sinai often interact with pharmaceutical, device and biotechnology companies to improve patient care, develop new therapies and achieve scientific breakthroughs. In order to promote an ethical and transparent environment for conducting research, providing clinical care and teaching, Mount Sinai requires that salaried faculty inform the School of their relationships with such companies.

Dr. Hicks did not report having any of the following types of financial relationships with industry during 2013 and/or 2014: consulting, scientific advisory board, industry-sponsored lectures, service on Board of Directors, participation on industry-sponsored committees, equity ownership valued at greater than 5% of a publicly traded company or any value in a privately held company. Please note that this information may differ from information posted on corporate sites due to timing or classification differences.

Mount Sinai's faculty policies relating to faculty collaboration with industry are posted on our website at http://icahn.mssm.edu/about-us/services-and-resources/faculty-resources/handbooks-and-policies/faculty-handbook. Patients may wish to ask their physician about the activities they perform for companies.

Edit profile in Sinai Central

Address

Annenberg Building Floor 19 Room 36
1468 Madison Avenue
New York, NY 10029

Tel: 212-241-7466
Fax: 212-996-7214