Publications

Li Y*, Shah RB*, Sarti S, Belcher A, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Raman M, Shao Z, Silva JM, Zha S, and Sidi S. A non-canonical IRAK1 signaling pathway triggered by DNA damage. Sci Signal (2023) in press. *equal contributions.
bioRxiv [Preprint] 2023 Feb 8; doi: 10.1101/2023.02.08.527716, 2023.  

Shah RB, Kernan JB, van Hoogstraten A, Ando K, Li Y, Belcher AL, Mininger I, Bussenault AM, Raman R, Ramanagoudr-Bhojappa R, Huang TT, D’Andrea AD, Chandrasekharappa SC, Aggarwal AK, Thompson R, and Sidi S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev Cell (2021) 56:2207-2222.

Dubiella C, Pinch BJ, Koikawa K, Zaidman D, Poon E, Manz TD, Nabet B, He S, Resnick E, Rogel A, Langer EM, Daniel CJ, Seo H-S, Chen Y, Adelmant G, Sharifzadfeh S, Ficarro SB, Jamin Y, Martins Da Costa B, Zimmerman MW, Lian X, Kibe S, Kozono S, Doctor ZM, Browne CM, , Yang A, Stoler-Barak L, Shah RB, Vangos NE, Geffken EA, Oren R, Koide E, Sidi S, Shulman Z, Wang C, Marto JA, Dhe-Paganon S, Look AT, Zhou X-Z, Lu KP, Sears RC, Chesler L, Gray NS, and London N. Sulfopin is a selective covalent Pin1 inhibitor that blocks Myc-driven tumors in vivo. Nat Chem Biol (2021) 17:954-963, https://doi.org/10.1038/s41589-021-00786-7.

Thompson R, Gatenby R, and Sidi S. How cells handle DNA breaks during mitosis: detection, signaling, repair, and fate choice. Cells (2019) 8, 1049; doi:10.3390/cells8091049.

Liu PH and Sidi S. Targeting the innate immune kinase IRAK1 in radioresistant cancer: double-edged sword or one-two punch? Front Oncol (2019) 9:1174, doi: 10.3389/fonc.2019.01174.

Liu PH, Shah RB, Li Y, Arora A, Ung PM-U, Raman R, Gorbatenko A, Kozono S, Zhou XZ, Brechin V, Barbaro JM, Thompson R, White RM, Aguirre-Ghiso JA, Heymach JV, Lu KP, Silva JM, Panageas KS, Schlessinger A, Maki RG, Skinner HD, de Stanchina E and Sidi S. An IRAK1-PIN1 signaling axis drives intrinsic tumour resistance to radiation therapy. Nat Cell Biol (2019) 21:203-213.

Sidi S and Bouchier-Hayes L. Direct pro-apoptotic role for NPM1 as a regulator of PIDDosome formation. Mol Cell Oncol (2017) 4:e1348325.

Bouchier-Hayes L and Sidi S. The nucleolus: A new home for the PIDDosome. Cell Cycle (2017) 16:1562-1563.

Ando K, Parsons MJ, Shah RB, Charendoff C, Liu PH, Fassio SR, Rohrman B, Thompson R, Oberst A, Sidi S, and Bouchier-Hayes L. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol (2017) 216:1795-1810. equal contributions

Shah RB, Thompson R, and SIdi S. A mitosis-sensing caspase-activation platform? New insights into the PIDDosome. Mol Cell Oncol (2015) 3:e1059921.

Thompson R, Shah RB, Liu PH, Gupta Y, Ando K, Aggarwal AK, and Sidi S. An inhibitor of PIDDosome formation. Mol Cell (2015) 58, 767-779. doi: 10.1016/j.molcel.2015.03.034. Epub 2015 Apr 30.

Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J, Look AT, Wang J, Bouchier-Hayes L, and Sidi S. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol Cell (2012) 47:681-693. doi: 10.1016/j.molcel.2012.06.024.

Chen CC, Kennedy RD, Sidi S, Look AT and D’Andrea AD. Chk1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Mol Cancer (2009) 8:24, doi:10.1186/1476-4598-8-24.

Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA and Look AT. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2 and caspase-3. Cell (2008) 133:864-877.