FDA: Significant Risk and Nonsignificant Risk Devices

The following is a direct quote from the FDA

“Significant Risk and Nonsignificant Risk Medical Device Studies

The Investigational Device Exemption (IDE) regulations [21 CFR part 812] describe two types of device studies, "significant risk" (SR) and "nonsignificant risk" (NSR). An SR device study is defined [21 CFR 812.3(m)] as a study of a device that presents a potential for serious risk to the health, safety, or welfare of a subject and (1) is intended as an implant; or (2) is used in supporting or sustaining human life; or (3) is of substantial importance in diagnosing, curing, mitigating or treating disease, or otherwise prevents impairment of human health; or (4) otherwise presents a potential for serious risk to the health, safety, or welfare of a subject. An NSR device investigation is one that does not meet the definition for a significant risk study. NSR device studies, however, should not be confused with the concept of "minimal risk," a term utilized in the Institutional Review Board (IRB) regulations [21 CFR part 56] to identify certain studies that may be approved through an "expedited review" procedure. For both SR and NSR device studies, IRB approval prior to conducting clinical trials and continuing review by the IRB are required. In addition, informed consent must be obtained for either type of study [21 CFR part 50].

Distinguishing Between SR and NSR Device Studies

The effect of the SR/NSR decision is very important to research sponsors and investigators. SR device studies are governed by the IDE regulations [21 CFR part 812]. NSR device studies have fewer regulatory controls than SR studies and are governed by the abbreviated requirements [21 CFR 812.2(b)]. The major differences are in the approval process and in the record keeping and reporting requirements. The SR/NSR decision is also important to FDA because the IRB serves, in a sense, as the Agency's surrogate with respect to review and approval of NSR studies. FDA is usually not apprised of the existence of approved NSR studies because sponsors and IRBs are not required to report NSR device study approvals to FDA. If an investigator or a sponsor proposes the initiation of a claimed NSR investigation to an IRB, and if the IRB agrees that the device study is NSR and approves the study, the investigation may begin at that institution immediately, without submission of an IDE application to FDA.

If an IRB believes that a device study is SR, the investigation may not begin until both the IRB and FDA approve the investigation. To help in the determination of the risk status of the device, IRBs should review information such as reports of prior investigations conducted with the device, the proposed investigational plan, a description of subject selection criteria, and monitoring procedures. The sponsor should provide the IRB with a risk assessment and the rationale used in making its risk determination [21 CFR 812.150(b)(10)].

SR/NSR Studies and the IRB: The NSR/SR Decision

The assessment of whether or not a device study presents a NSR is initially made by the sponsor. If the sponsor considers that a study is NSR, the sponsor provides the reviewing IRB an explanation of its determination and any other information that may assist the IRB in evaluating the risk of the study. The sponsor should provide the IRB with a description of the device, reports of prior investigations with the device, the
proposed investigational plan, a description of patient selection criteria and monitoring procedures, as well as any other information that the IRB deems necessary to make its decision. The sponsor should inform the IRB whether other IRBs have reviewed the proposed study and what determination was made. The sponsor must inform the IRB of the Agency’s assessment of the device’s risk if such an assessment has been made. The IRB may also consult with FDA for its opinion.

The IRB may agree or disagree with the sponsor’s initial NSR assessment. If the IRB agrees with the sponsor’s initial NSR assessment and approves the study, the study may begin without submission of an IDE application to FDA. If the IRB disagrees, the sponsor should notify FDA that an SR determination has been made. The study can be conducted as an SR investigation following FDA approval of an IDE application.

The risk determination should be based on the proposed use of a device in an investigation, and not on the device alone. In deciding if a study poses an SR, an IRB must consider the nature of the harm that may result from use of the device. Studies where the potential harm to subjects could be life-threatening, could result in permanent impairment of a body function or permanent damage to body structure, or could necessitate medical or surgical intervention to preclude permanent impairment of a body function or permanent damage to body structure should be considered SR. Also, if the subject must undergo a procedure as part of the investigational study, e.g., a surgical procedure, the IRB must consider the potential harm that could be caused by the procedure in addition to the potential harm caused by the device. Two examples follow:

The study of a pacemaker that is a modification of a commercially—available pacemaker poses a SR because the use of any pacemaker presents a potential for serious harm to the subjects. This is true even though the modified pacemaker may pose less risk, or only slightly greater risk, in comparison to the commercially-available model. The amount of potential reduced or increased risk associated with the investigational pacemaker should only be considered (in relation to possible decreased or increased benefits) when assessing whether the study can be approved.

The study of an extended wear contact lens is considered SR because wearing the lens continuously overnight while sleeping presents a potential for injuries not normally seen with daily wear lenses, which are considered NSR.

FDA has the ultimate decision in determining if a device study is SR or NSR. If the Agency does not agree with an IRB’s decision that a device study presents an NSR, an IDE application must be submitted to FDA. On the other hand, if a sponsor files an IDE with FDA because it is presumed to be an SR study, but FDA classifies the device study as NSR, the Agency will return the IDE application to the sponsor and the study would be presented to IRBs as an NSR investigation.
NONSIGNIFICANT RISK DEVICES

Low Power Lasers for treatment of pain
Caries Removal Solution
Daily Wear Contact Lenses and Associated Lens Care Products not intended for use directly in the eye (e.g., cleaners; disinfecting, rinsing and storage solutions)
Contact Lens Solutions intended for use directly in the eye (e.g., lubricating/rewetting solutions) using active ingredients or preservation systems with a history of prior ophthalmic/contact lens use or generally recognized as safe for ophthalmic use
Conventional Gastroenterology and Urology Endoscopes and/or Accessories
Conventional General Hospital Catheters (long-term percutaneous, implanted, subcutaneous and intravascular)
Conventional Implantable Vascular Access Devices (Ports)
Conventional Laparoscopes, Culdoscopes, and Hysteroscopes
Dental Filling Materials, Cushions or Pads made from traditional materials and designs
Denture Repair Kits and Realigners
Digital Mammography [Note: an IDE is required when safety and effectiveness data are collected which will be submitted in support of a marketing application.]
Electroencephalography (e.g., new recording and analysis methods, enhanced diagnostic capabilities)
Externally Worn Monitors for Insulin Reactions
Functional Electrical Neuromuscular Stimulators
General Biliary Catheters General Urological Catheters (e.g., Foley and diagnostic catheters)
Jaundice Monitors for Infants
Magnetic Resonance Imaging (MRI) Devices within FDA specified parameters
Manual Image Guided Surgery
Menstrual Pads (Cotton or Rayon, only)
Menstrual Tampons (Cotton or Rayon, only)
Nonimplantable Electrical Incontinence Devices
Nonimplantable Male Reproductive Aids with no components that enter the vagina
Ob/Gyn Diagnostic Ultrasound within FDA approved parameters
Transcutaneous Electric Nerve Stimulation (TENS) Devices for treatment of pain
Wound Dressings, excluding absorbable hemostatic devices and dressings (also excluding Interactive Wound and Burn Dressings)

SIGNIFICANT RISK DEVICES

General Medical Use

Catheters:
Urology - urologic with anti-infective coatings
General Hospital - except for conventional long-term percutaneous, implanted, subcutaneous and intravascular
Neurological - cerebrovascular, occlusion balloon
Cardiology - transluminal coronary angioplasty, intra-aortic balloon with control system
Collagen Implant Material for use in ear, nose and throat, orthopedics, plastic surgery, urological and dental applications
Surgical Lasers for use in various medical specialties
Tissue Adhesives for use in neurosurgery, gastroenterology, ophthalmology, general and plastic surgery, and cardiology
Anesthesiology
Breathing Gas Mixers
Bronchial Tubes
Electroanesthesia Apparatus
Epidural and Spinal Catheters
Epidural and Spinal Needles
Eosophageal Obturators
Gas Machines for anesthesia or analgesia
High Frequency Jet Ventilators greater than 150 BPM
Rebreathing Devices
Respiratory Ventilators
Tracheal Tubes

Cardiovascular
Aortic and Mitral Valvuplasty Catheters
Arterial Embolization Devices Cardiac Assist Devices: artificial heart (permanent implant and short term use), cardiomyoplasty devices, intra-aortic balloon pumps, ventricular assist devices
Cardiac Bypass Devices: oxygenators, cardiopulmonary non-roller blood pumps, closed chest devices
Cardiac Pacemaker/Pulse Generators: antitachycardia, esophageal, external transcutaneous, implantable
Cardiopulmonary Resuscitation (CPR) Devices
Cardiovascular/Intravascular Filters
Coronary Artery Retropertusion Systems
Coronary Occluders for ductus arteriosus, atrial and septal defects
Coronary and Peripheral Arthrectomy Devices
Extracorporeal Membrane Oxygenators (ECMO)
Implantable Cardioverters/Defibrillators
Laser Coronary and Peripheral Angioplasty Devices
Myoplasty Laser Catheters
Organ Storage/Transport Units
Pacing Leads
Percutaneous Conduction Tissue Ablation Electrodes
Peripheral, Coronary, Pulmonary, Renal, Vena Caval and Peripheral Stents
Replacement Heart Valves
RF Catheter Ablation and Mapping Systems
Ultrasonic Angioplasty Catheters
Vascular and Arterial Graft Prostheses
Vascular Hemostasis Devices

Dental
Absorbable Materials to aid in the healing of periodontal defects and other maxillofacial applications
Bone Morphogenic Proteins with and without bone, e.g., Hydroxyapatite (HA)
Dental Lasers for hard tissue applications
Endosseous Implants and associated bone filling and augmentation materials used in conjunction with the implants
Subperiosteal Implants
Temporomandibular Joint (TMJ) Prostheses

Ear, Nose, and Throat
Auditory Brainstem Implants
Cochlear Implants
Laryngeal Implants
Total Ossicular Prosthesis Replacements

Gastroenterology and Urology
Anastomosis Devices
Balloon Dilation Catheters for benign prostatic hyperplasia (BPH)
Biliary Stents
Components of Water Treatment Systems for Hemodialysis
Dialysis Delivery Systems
Electrical Stimulation Devices for sperm collection
Embolization Devices for general urological use
Extracorporeal Circulation Systems
Extracorporeal Hyperthermia Systems
Extracorporeal Photopheresis Systems
Femoral, Jugular and Subclavian Catheters
Hemodialyzers
Hemofilters
Implantable Electrical Urinary Incontinence Systems
Implantable Penile Prostheses
Injectable Bulking Agents for incontinence
Lithotripters (e.g., electrohydraulic extracorporeal shock-wave, laser, powered mechanical, ultrasonic)
Mechanical/Hydraulic Urinary Incontinence Devices
Penetrating External Penile Rigidity Devices with components that enter the vagina
Peritoneal Dialysis Devices
Peritoneal Shunt
Plasmapheresis Systems
Prostatic Hyperthermia Devices
Urethral Occlusion Devices
Urethral Sphincter Prostheses
Urological Stents (e.g., ureteral, prostatG)

General and Plastic Surgery
Absorbable Adhesion Barrier Devices
Absorbable Hemostatic Agents
Artificial Skin and Interactive Wound and Burn Dressings
Injectable Collagen
Implantable Craniofacial Prostheses
Repeat Access Devices for surgical procedures
Sutures

General Hospital
Implantable Vascular Access Devices (Ports) - if new routes of administration or new design
Infusion Pumps (implantable and closed-loop - depending on the infused drug)

Neurological
Electroconvulsive Therapy (ECT) Devices
Hydrocephalus Shunts
Implanted Intracerebral/Subcortical Stimulators
Implanted Intracranial Pressure Monitors
Implanted Spinal Cord and Nerve Stimulators and Electrodes
Obstetrics and Gynecology
Antepartum Home Monitors for Non-Stress Tests
Antepartum Home Uterine Activity Monitors
Catheters for Chorionic Villus Sampling (CVS)
Catheters Introduced into the Fallopian Tubes
Cervical Dilation Devices
Contraceptive Devices:
 Cervical Caps
 Condoms (for men) made from new materials (e.g., polyurethane)
 Contraceptive In Vitro Diagnostics (IVDs)
 Diaphragms
 Female Condoms
 Intrauterine Devices (IUDs)
 New Electrosurgical Instruments for Tubal Coagulation
 New Devices for Occlusion of the Vas Deferens
 Sponges
 Tubal Occlusion Devices (Bands or Clips)
Devices to Prevent Post-op Pelvic Adhesions
Embryoscopes and Devices intended for fetal surgery
Falloposcopes and Falloposcopic Delivery Systems
Intrapartum Fetal Monitors using new physiological markers
New Devices to Facilitate Assisted Vaginal Delivery
Thermal Systems for Endometrial Ablation

Ophthalmics
 Class III Ophthalmic Lasers
 Contact Lens Solutions intended for direct instillation (e.g., lubrication/rewetting solutions) in the eye using new active agents or preservatives with no history of prior ophthalmic/contact lens use or not generally recognized as safe for ophthalmic use
 Corneal Implants
 Corneal Storage Media
 Epikeratophakia Lenticules
 Extended Wear Contact Lens
 Eye Valve Implants (glaucoma implant)
 Intraocular Lenses (IOLs) [21 CFR part 813]
 Keratoprosthesis Retinal Reattachment Systems: fluids, gases, perfluorocarbons, perfluoropropane, silicone oil, sulfur hexafluoride, tacks
 Viscosurgical Fluids

Orthopedics and Restorative
Bone Growth Stimulators
Calcium Tri-Phosphate Hydroxyapatite
Ceramics Collagen and Bone Morphogenic Protein Meniscus Replacements
Implantable Prostheses (ligament, tendon, hip, knee, finger)
Computer Guided Robotic Surgery

Radiology
 Boron Neutron Capture Therapy
 Hyperthermia Systems and Applicators”