
Robert J Desnick, PhD, MD
- PROFESSOR & CHAIR EMERITUS | Genetics and Genomic Sciences
- PROFESSOR | Pediatrics
- PROFESSOR | Oncological Sciences
- PROFESSOR | Obstetrics, Gynecology and Reproductive Science
Specialty:
Genetics and GenomicsResearch Topics:
Enzymology, Gene Discovery, Genetics, Genomics, Human Genetics and Genetic Disorders, Lysosomal Storage Diseases, Lysosomes/endosome, Protein Complexes, Protein Degradation, Protein Folding, Protein Structure/Function, Proteomics, Stem CellsIn the News
In this "Daily Check Up" feature from The Daily News, Dr. Desnick talks about treating genetic diseases.
View the PDF.
Certifications
Clinical Biochemical Genetics
Clinical Focus
Multi-Disciplinary Training Area
Genetics and Genomic Sciences [GGS]Education
MD, Univ of Minnesota-Med Sch. Minneapo
Residency, Pediatrics, Univ of Minnesota-Med Sch. Minneapo
-
2010
Distingushed Service Award -
2005
Award for Excellence in Clinical Research -
2005
Albion O. Bernstein, MD Award for Contributions in Disease Prevention -
2004
Jacobi Medal -
2004
Edward H. Ahrens Jr. Award for Research -
2004
Distinguished Alumni Award -
2004
Doctor of Science, Honoris Causa -
2004
Elected Senior Fellow, -
2004
Elected Member -
2003
J. Lester Gabrilove Award for Medical Research -
2000
Best Doctors -
1999
Honorary Member -
1992
NIH MERIT Award -
1991
Correspondent Member -
1991
Outstanding Faculty Award -
1985
Honorary Member -
1981
E. Mead Johnson Award for Research in Pediatrics of the American Academy of Pediatrics -
1975
NIH Research Career Development Award -
1973
C.J. Watson Award, University of Minnesota -
1968
U.S. Public Health Service Fellowship in Genetics
Molecular Genetics and Treatment of Lysosomal Storage Diseases & Inhertited Porphyrias
For the past two decades, studies of the lysosome and the pathogenesis and treatment of lysosomal storage diseases have been a major research theme of this laboratory. For example, in Fabry disease (galactosidase-Gal A] deficiency), our group isolated the human-Gal A gene, developed novel overexpression methods, and made knock-out mice with Fabry disease for preclinical studies of enzyme and gene therapy. These basic science studies provided the rationale for the clinical trials of enzyme therapy that proved effective in this disease. These studied culminated in approval of enzyme replacement for Fabry disease by the FDA in April 2003. Current studies are directed to: 1) identify and characterize the structure/function relationships of mutations in the Gal A gene which cause Fabry disease, 2) develop novel therapeutic strategies to treat Fabry disease and other disorders due to protein misfolding by rescuing/stabilizing the misfolded protein with small molecule pharmacologic chaperones, and 3) develop stem cell and gene replacement strategies for these diseases.
Heme biosynthesis requires eight enzymatic steps to convert succinyl-CoA and glycine to the final product, heme. All eight enzymes are encoded by nuclear genes, with the first and last three enzymes being located in the mitochondria while the second through fifth enzymes are in the cytosol. The inherited porphyrias are inborn errors of heme biosynthesis, each resulting from the deficient activity of a particular enzyme. Previously, our laboratory: 1) developed assays, 2) purified these enzymes, 3) isolated and characterized the cDNAs and genomic sequences encoding several enzymes, and 4) identified molecular lesions causing the different porphyrias. Recently, we developed knock-in mouse models for an erythropoietic porphyria, congenital erythropoietic porphyria (CEP), and are currently developing knock-in mice to generate an improved mouse model for a hepatic porphyria, acute intermittent porphyria (AIP). These models will permit studies of the cutaneous and acute neurologic pathophysiologies of these porphyrias, and facilitate the development of novel therapies. Current therapeutic efforts in these models include hematopoietic stem cell therapy for CEP and AAV-8 mediated hepatic-targeted gene therapy for AIP.
Gene Discovery for Rare & Common Diseases
Using positional cloning and linkage analysis strategies, our previous efforts have resulted in the identification of several genes causing Mendelian disorders. Current research is focused on several Mendelian disorders and complex traits including Crohn’s disease, a common inflammatory bowel disease. To identify the predisposing/susceptibility genes for complex traits, genome-wide association studies using 1 million SNP-DNA arrays, candidate gene approaches, and sequencing for rare variants are being used. Studies of common complex traits will guide future predictive and preventive genetic strategies for improved, personalized health
Pharmacogenetics / Pharmacogenomics
These studies involve the identification of variations in human genes responsible for the metabolism of drugs. These variations cause the adverse drug responses that are common and often life-threatening. Examples of the known genes with varying pharmacogenetic responses are the P450 genes. By identifying the key genetic variations in an individual's genome that alter the activation, metabolism, transport, distribution and clearance of a given drug, a person's pharmacogenetic profile can be determined, permitting personalized drug selection and dosage. Currently, we are a site for the NIH-sponsored clinical trial of genome-guided dosing for warfarin. Using single nucleotide polymorphisms (SNPs), candidate genes for a given drug are interrogated for informative haplotypes which are then tested in a given population of individuals experiencing adverse affects of the drug. In addition, variations that alter drug metabolism can be tested in individuals taking the drug.
Physicians and scientists on the faculty of the Icahn School of Medicine at Mount Sinai often interact with pharmaceutical, device and biotechnology companies to improve patient care, develop new therapies and achieve scientific breakthroughs. In order to promote an ethical and transparent environment for conducting research, providing clinical care and teaching, Mount Sinai requires that salaried faculty inform the School of their relationships with such companies.
Below are financial relationships with industry reported by Dr. Desnick during 2022 and/or 2023. Please note that this information may differ from information posted on corporate sites due to timing or classification differences.
Consulting:
- Alnylam Pharmaceuticals; Mitsubishi Tanabe Pharma; Recordati Rare Diseases, Inc. (RRD); Sanofi/Genzyme
Royalty Payments:
- Alnylam Pharmaceuticals; Genzyme Corporation; Luminex Corporation; Sema4; Shire
Mount Sinai's faculty policies relating to faculty collaboration with industry are posted on our website. Patients may wish to ask their physician about the activities they perform for companies.
Physicians who provide services at hospitals and facilities in the Mount Sinai Health System might not participate in the same health plans as those Mount Sinai hospitals and facilities (even if the physicians are employed or contracted by those hospitals or facilities).
Information regarding insurance participation and billing by this physician may be found on this page, and can also be obtained by contacting this provider directly. Because physicians insurance participation can change, the insurance information on this page may not always be up-to-date. Please contact this physician directly to obtain the most up-to-date insurance information.
Insurance and health plan networks that the various Mount Sinai Health System hospitals and facilities participate in can be found on the Mount Sinai Health System website.